VDM® Alloy HT 80

Bezeichnungen und Normen

Normung	Werkstoffbezeichnung				
Werkstoffnummer	2.4869				
DIN Kurzzeichen	NiCr 80 20				
DIN	17470 (Heizleiter) 17471 (Widerstandsleg.) 17742, 17753 (Draht)				
UNS	N06023				
ASTM	B 344				
SAE AMS	5682				

Chemische Zusammensetzung (Gewicht - %) gem. DIN 17742

	Fe	Cr	Ni	С	Mn	Si	Cu	Мо	Al	Andere
Min.		19	Post			1				
Max.	1	21	Rest	0,08	1,0	1,5	0,5		0,3	0,015

Mechanische Eigenschaften bei Raumtemperatur gem. DIN 17470 und 17471

	N/mm²	ksi		
Zugfestigkeit (Rm)	≥ 650	≥ 94,3		
-				

Drahtdurchmesser (mm)	Bruchdehnung A _{L=100} (in %)	
0,063 – 0,125	≈ 14	
> 0,125 - 0,5	≈ 18	
> 0,5 - 1,0	≥ 18	
> 1,0	≥ 25	

Langzeit-Warmfestigkeitswerte (N/mm²)

Temperatur in °C	$R_{p,1,0}/10^3h$		
600	80		
700	40		
800	15		
900	9		
1.000	4		
1.200	0,5		

Physikalische Eigenschaften bei Raumtemperatur

Dichte	(g/cm ³)	8,3
Wärmeleitfähigkeit	(W/m • K)	14,6
Elastizitätsmodul	(kN/mm ²)	200

Temperatur in °C	Elektrischer Widerstand		Wärmeausdehnungs- koeffizient	Spezifische Wärme	
	(μΩ	(cm)	(10 ⁻⁶ /K)	(J/kg • K)	
	DIN 17470	ASTM B 344	_		
20	112	108	-	420	
200	113	110	14,0	-	
400	115	114	15,0	-	
500	116	116	15,4	=	
600	115	115	15,5	-	
800	114	114	16	-	
1.000	115	115	17	500	
1.200	117	117	-	-	

Verarbeitung

Schmelztemperatur	(°C)	1.400
Max. Arbeitstemperatur in Luft	(°C)	1.200 (als Heizleiter) 600 (als Widerstandsleg.)
Umformbarkeit		Gut
Schweißbarkeit		Zufriedenstellend
Schweißzusatz		Artgleich

Materialeigenschaften

- Gute Warmfestigkeit
- Oxidationsbeständigkeit bis 1.200 °C
- Sehr konstante elektrische Eigenschaften

Typische Anwendungen

- Präzisions-, Mess- und Lastwiderstände
- Potentiometer
- Heizdrähte und -kabel

Impressum

24.06.2020

Herausgeber

VDM Metals International GmbH Plettenberger Straße 2 58791 Werdohl Germany

Disclaimer

Alle Angaben in diesem Dokument beruhen auf Ergebnissen aus der Forschungs- und Entwicklungstätigkeit der VDM Metals International GmbH und den zum Zeitpunkt der Drucklegung zur Verfügung stehenden Daten der aufgeführten Spezifikationen und Standards. Die Angaben stellen keine Garantie für bestimmte Eigenschaften dar. VDM Metals behält sich das Recht vor, Angaben ohne Ankündigung zu ändern. Alle Angaben in diesem Dokument wurden nach bestem Wissen zusammengestellt und erfolgen ohne Gewähr. Lieferungen und Leistungen unterliegen ausschließlich den jeweiligen Vertragsbedingungen und den Allgemeinen Geschäftsbedingungen von VDM Metals. Die Verwendung der aktuellsten Version dieses Dokumentes obliegt dem Kunden.